Spring 2015 - Berkeley, CA-

CS24

FRESHMAN SEMINAR FOR CS SCHOLARS

WEEK 5 - COMPUTATIONAL MATHEMATICS

—— FAST!!!! MATLAB AND NUMPY - OPTIMIZATION + PARALLELISM —

10	24×1024	2048x2048	4096x4096
CUDA C (ms)	43.11	391.05	3407.99
C++ (ms)	6137.10	64369.29	551390.93
C# (ms)	10509.00	300684.00	2527250.00
Java (ms)	9149.90	92562.28	8383 <i>57</i> .94
MATLAB (ms)	75.01	423.10	3133.90

Java Virtual Machine = Can't use system architecture

http://stackoverflow.com/questions/6058139/why-is-matlab-so-fast-in-matrix-multiplication

Vector

$$v = [1, 2, 3, 4];$$

Range

$$v = 1:10; => 1, 2, 3, ..., 10$$

Range w/ Step

$$v = 1:2:10; => 1, 3, 5, ..., 9$$

Indexing

$$v(1) => 1$$

Indexing Subset

$$v(1:3) => 1, 3, 5$$

Transpose

$$v' => [1; 3; 5; 9]$$

Fast matrices

http://www.math.wsu.edu/math/kcooper/M300/text.php

Thinking in Matrices

```
// loop method
total = 0;
for i=1:length(v)
    total = total + abs(v(i));
end

// matrix method
total = abs(v) * ones(length(v),1);

// matrix method 2
total = sum(abs(v))
```

Translating from abstract to discrete

sinwave

Abstract

Discrete

"sampling" = reduction of a continuous signal to a discrete signal

"sample" = ° the point in time/space

"sampling rate" = $f_s = 1/T$ (Hz)

Choosing a sampling rate

NYQUIST SAMPLING THEOREM

In order to represent a signal well, the sampling rate (or sampling frequency) needs to be at least twice the highest frequency contained in the signal.

Undersampling:(

Representing an equation in matlab —

$$x = 1:0.5:100$$

 $y = sin(x)$
 $z = cos(x)$

CONVOLUTION

INTEGRAL FORM

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

DISCRETE FORM

$$g(x) = f(x) * h(x) = \sum_{-\infty}^{\infty} h(x - k)f(k)$$

-What does this mean?—

$$g(x) = f(x) * h(x) = \sum_{-\infty}^{\infty} h(x - k)f(k)$$

EX1.

SIGNAL

f(x) h(x)

KERNEL

10 5

18 9

5

2

22 22 | 15 |

SIGNAL PROCESSING

- 2-D Case - Image Processing-

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

PAINTBRUSH IS A KERNEL

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

http://matlabtricks.com/post-5/3x3-convolution-kernels-with-online-demo

GPS SCENARIO

What if Napoleon had a GPS tracker?

Let's generate a retreat detector!

TODOS

COOKBOOK #4 QA #4

SIMPLER Q/A SUBMIT
PARTNER LINK NO LONGER NEEDED.
MAKE SURE TO ADD YOUR NAME TO THE FILES.

QUESTIONS ?-

Week 6

HUMAN COMPUTER INTERACTION

RECIPES AND QUESTIONS (A4) DUE