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Fig. 1. The exploratory flow for Charlotte. User begins by viewing data portraits of Web page clusters, inspecting them visually,
by URL, or page labels. The next level uses a data profile to allow for deeper examination of a grouping. The profile consists of
visualizations capturing design principles across all the pages in the cluster. Brushing and linking allows for individual data points to
be put in context, and the grouping itself can be seen in context using small multiples.

Abstract— Exploring a design space must generally be done by manual inspection of many design examples. Visualizing design
data in an aggregate way can make this process more efficient, but as design data lies in a high-dimensional feature space, selecting
the important elements to view is challenging. This work presents Charlotte, a system that enables exploration of Web designs
represented in 1,713 dimensions by applying the concept of data portraits and generating visualizations that capture groups of pages
with respect to a selected set of design principles. Charlotte demonstrates that meaningful patterns and trends among the design
data can explored by using these principles to inform data-driven portraits.

Index Terms—high-dimensional data, design

1 INTRODUCTION

Investigating current design practices can make designers more visu-
ally fluent, allowing them to draw from examples and learn from er-
rors. But getting a sense for what a design space looks like is non-
trivial and may require years of experience. To explore a design space,
people usually must browse through many individual examples, which
after an extended period of time might only compose a small fraction
of existing work. The barrier to comprehensively characterizing a de-
sign space is high, which may prohibit many from attempting it. What
if there was a way to browse design in aggregate such that hundreds of
examples could be inspected at once?

Related work has used data portraits to create compact visualiza-
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tions of complex subjects, namely people. We applied this concept
to the field of Web design, enabling aggregate visualization of design
with respect to a set of design principles. However, the problem with
aggregating information for complex subjects, whose data may lie in
thousand-dimensional feature spaces, is selecting which features to vi-
sualize.

This paper’s primary contribution is Charlotte, a system that uses
data portraits and aggregate visualizations to allow exploration of com-
plex, high-dimensional subjects, in this case, Web designs. Charlotte
enables aggregate visualization of Web design with respect to a selec-
tion of design principles. We enable exploration on the level of page
groupings using a Web abstraction and multiple visualizations of de-
sign elements, as well as on the level of individual pages. The views
and interactions that we implement allow users to form hypotheses
about the design space, then verify these hypotheses by finer-grained
inspection of pages.

In the following sections we first describe related work on which
our system builds and the features of our data set. We proceed to
outline the methods we used to form high-level groupings and select
and encode design principles, as well as the implementation of our
system. Finally we present some findings from our own investigations



using Charlotte and discuss future work.

2 RELATED WORK

This system builds off of related work on high-dimensional feature
spaces, clustering data, and data portraits. With the increasing amount
of data being generated, working with high-dimensional feature spaces
has become more relevant than ever. From principal component analy-
sis to k-means clustering, many methods are currently being explored
to help make sense of large data sets [6]. Instead of using advanced
techniques, we begin by creating informal groupings of our data. We
then leverage information unique to Web design, namely URL names-
pace, descriptive labels, and design principles, to inform explorations.

Previous work has also shown how clustering objects using differ-
ent visualization techniques can produce different results [5]. Al-
though we realize our grouping method, if uninformed, may limit sub-
sequent explorations, we see our work as a first step in investigating
how to effectively group Web designs.

Our work also draw from research on data portraits, which repre-
sent people in online communities using the data they generate [1].
Data portraits are based on the notion that users can better interact
with users if they have easy access to information about them. They
represent subjects using metaphors that encode important data. For ex-
ample in an online forum, a person may be depicted as a flower whose
number of petals represents his amount of recent activity [9]. This
approach, a hybrid of subjective art and objective information, aims
to succinctly communicate data in a way that is easy for humans to
interpret and use for comparison.

Our system adapts the data portrait concept for Web design by rep-
resenting Web pages using a spider web metaphor. We use them to
provide an approximate characterization of Web designs for a high-
level comparison. In contrast to previous work we encode significantly
more information in our data portraits, though the precision to which
the data is encoded is approximate rather than exact.

3 DATA SET

Our data set consists of 1,713-dimensional feature vectors and two
classes of crowdsourced labels for 3,218 pages. It is drawn from the
Webzeitgeist, a platform for machine learning on Web design that pro-
vides a repository of Web pages along with their computed visual seg-
mentations, feature vectors, and crowdsourced labels [7]. The vi-
sual segmentations restructure the underlying DOM (Document Ob-
ject Model) of the Web page such that each element is a visually salient
region of the page. The feature vectors capture DOM-related and com-
puter vision features for each Web page. DOM features include infor-
mation such as color, size, tag name, etc., while computer vision fea-
tures include those from the Gist graphics library. For each page, we
also have a set of crowdsourced labels describing its site type (such as
“blog or “news ) and design style (such as “minimal or “colorful).

4 METHOD

We built an interactive system to exploring Web design leveraging a
rich data set. To allow for high-level explorations, we group Web
pages into clusters based on their raw feature vectors. We enable com-
parisons using data portraits and querying by URL and page labels. To
enable deeper comparisons among clusters, we create data profiles for
each one, summarizing aggregate statistics drawn from design prin-
ciples and page labels. Interactions that allow comparisons among
clusters and inspection of individual pages empowers users to observe
and infer design patterns and trends. This exploratory flow is shown
in Figure .

4.1 Clustering Web Pages

Navigating through a set of thousands of pages can be overwhelming,
so before enabling in-depth exploration, we first grouped pages by
similarity. We applied an unsupervised machine learning technique
called K-means clustering to our raw feature vectors, forming fifteen
distinct clusters of pages.

Fig. 2. A data portrait of a group of Web pages that encodes design
principles such as balance and harmony.

4.1.1 Webs as Data Portraits
To visualize the distinguishing features of each cluster, we created
data portraits for them using a spider “web” abstraction. Based on
the notion that a data portrait can efficiently encode large amounts of
disparate data, we used Adobe Illustrator to hand-craft web represen-
tations of the clusters using seven principle encodings: balance, color
harmony, contrast, emphasis, movement, pattern, and rhythm. A sub-
set of these encodings were further used to develop visualizations for
the clusters’ data profiles. The web concept is fitting because it invokes
the complexity and richness reflected in our data.

To encode these principles into the webs, we computed aggregate
statistics for the target cluster using features such as spatial distribu-
tion of page elements, dominant color, largest leaf element or average
number of siblings in the DOM tree, etc. We then translated these
statistics to correspond to visual features on the webs. For example
balance was represented by the proximity of radial rings on the web.
More rings closer to the center indicates a page that is skewed to the
right. Color is encoded simply by applying the three dominant colors
to a ring on the web. Contrast is separately encoded using opacity of
a checkerboard pattern in one ring of the web. For example, higher
contrast will produce a black and white pattern, while lower contrast
tends toward greys. Emphasis is represented by a bolder ring, whose
radius represents the amount of emphasis on a page. Movement is en-
coded using a zig-zagging path across the web. Pattern is represented
by the number of elements on a page; more complex pages will have
more cells in the web. Rhythm represented using a series of extended
web strings. Besides drawing attention, these webs enable high-level
comparisons of clusters from a “zoomed-out” view. Figure 2 shows an
example of one of the webs.

4.1.2 Scenting by URL and Labels
Information scenting by URL and page labels allowed these high-level
groupings to serve as an entry point to deeper investigation. While
our data portraits sketch the characteristics of each cluster of pages,
selecting which group to explore based on abstracted principles may
be challenging. To encourage exploration of individual clusters, we
allowed users to identify clusters containing a particular URL. Webs
containing the URL remain, and others fade away. We also allow clus-
ters to be identified by site type and style labels. Upon selection of a



label such as ”dark,” clusters containing pages labeled ”dark” remain
opaque. The clusters’ opacities are adjusted according to how many
relevant pages they contain, with the darkest webs indicating clusters
with the highest number of relevant pages. Scenting allows users to
associate clusters with more familiar characteristics, guiding them to
more explore more deeply.

Fig. 3. An example of a data profile for one group of pages.

4.2 Constructing a Data Profile
For every cluster, we constructed a data profile to visualize all its pages
with respect to different design principles. There are many important
principles, and there may be multiple ways of quantifying each one.
In this work we do not claim to define the best set of principles nor
create optimal metrics for assessing them. Instead, we aim to select a
set of principles that may be of interest to designers, vary across differ-
ent Web designs, and can be approximated using our feature set. The
aspects we chose to visualize are derived from a set of commonly ac-
cepted design principles and feedback from students in our visualiza-
tion class [4, 8]. They include balance, movement, contrast, harmony,
and unity. An example of a data profile is shown in Figure 3

+

+

Fig. 4. The left-most point (left) corresponds to a page with its elements
heavily concentrated on the left side of the page, while the center point
(right) refers to a symmetric page.

4.2.1 Balance
We computed the balance metric for each Web page by summing up
the vertical edges of all elements that fell on the left and right sides
of the page. The resulting ratios were then normalized with respect to
page area to enable comparisons among different pages. A straight-
forward way to view these ratios might be to plot them in a his-

togram. However, balance is about finding the center, where struc-
tural forces meet [2]. By creating a point whose angle reflects this
ratio, our skewed lines representation helps identify a center of bal-
ance and gives a sense of in what direction and to what extent the page
is skewed. Figure 4 shows how this method contrasts the balance for a
left-oriented page compared to one that is perfectly symmetric.

Fig. 5. Page screenshot (left) and composition representation with text
and images removed (right).

4.2.2 Movement
To view movement, the path that the viewer’s eye follows on the de-
sign, we show an alternate view of page layout as shown in Figure 5.
Images and text can distract from the underlying layout of the page,
so site content was omitted to create emphasis on how elements were
arranged on a page. For the profile of each page cluster, we used the
layout of its centroid, which can be considered a representative exam-
ple of it.

Fig. 6. Histograms for hue, saturation, and lightness (left). Hovering
over a swatch highlights the color palette for the corresponding page
(right).

4.2.3 Contrast and Harmony
Contrast and harmony were captured using page color. For every page
in the cluster we selected a palette of the dominant color along with
nine others generated by median cut quantization [3]. Swatches for
each color were plotted in histograms and grouped by hue, saturation,
and lightness as shown in Figure 6. These histograms show the distri-
bution of colors in this cluster across these three measures.

4.2.4 Unity
We used negative space to loosely approximate unity by reasoning that
pages with more negative space would have more distinct groupings
of elements and thus be more unified. To compute negative space,
we took the background color of each page and computed the area of
foreground elements based on a certain threshold. We visualized the
resulting ratios using the ratio of white to black area in a segmented
pie chart as shown in Figure 7. In contrast with other graph types, this
form gives a a better sense for the aggregate negative space ratio for
the entire cluster.

4.2.5 Labels
Although site type and style labels are not design principles, these
labels are useful because they allow users to associate more explicit
descriptors with the Web pages they are viewing. Therefore for each



Fig. 7. Negative space charts. Hovering over a swatch (left) highlights
the color palette for the corresponding page (right). The bottom right
wedge on the wheel corresponds to a page with a moderate amount
of positive space (top), while the bottom left wedge refers to one with
very little negative space (bottom). These ratios are reflected in the
respective wedges.

Fig. 8. Site type and style labels for a given page. Frequency is encoded
in the label’s opacity.

cluster we also show the labels applied to pages in that grouping as
simple text lists as in Figure 8. The opacity of each label encodes their
relative frequency.

4.3 Interactions

We implemented several interaction techniques that allowed users to
identify design patterns and more closely examine Web design charac-
teristics. The initial view for an individual cluster consists mainly of
the data profile for that cluster, displaying all the design principles in
their own visualizations. Brushing over any data point in each visual-
ization highlights the corresponding point in the others. Clicking on a
data point shows the screenshot of the page in the central area.

To compare principles across clusters, users can click on a principle
of interest, e.g., balance. Small multiples of the visualizations appear
on the right of the data profile, allowing users to see how the current
cluster compares to others in the design space. Hovering over any of
the multiples highlights the corresponding web beneath the toolbar.
Some of these interactions are depicted in Figure .

4.4 Implementation

The Charlotte system is constructed using the Rails Web application
framework and is comprised of four components: a data preprocessor,
a SQLite database, an application controller, and a data cacher. A
diagram is shown in 9.
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Fig. 9. The architecture of the Charlotte system. The database draws
from Webzeitgeist and results from a Matlab process to provide relevant
information to the application.

4.4.1 Data Preparation
The subset of pages used in our system from the Webzeitgeist reposi-
tory contains over 3,000 Web pages and over 300,000 visual blocks. In
order to utilize this data and scale to support the full corpus of 100,000
pages, we used the Webzeitgeist API, which provides access to page
level queries (screenshot, visual segmentation, page feature vectors)
and general batch queries (page identifiers). We selected a subset of
the pages that had either of two types of crowdsourced labels: site type
and style.

4.4.2 Preprocessor
The preprocessor seeds the database with the initial subset of labeled
pages, label frequencies, and the mappings of each URI to a host. A
Matlab process runs in the background and computes the k-means
clusters based on this subset of pages. The cluster assignments and
centroids are stored in a SQLite table.

4.4.3 Application controller
To handle the outward facing application, the application controller
handles the primary data transfer of cluster information. All data calls
thereafter are handled by the data cacher.

4.4.4 Data Cacher
Since we are calculating aggregate statistics for a group of pages, the
amount of client-side processing is computationally intensive and does
not scale to large data sets. In order to alleviate this problem, one com-
mon solution is to compute these features on the server-side as a pre-
process. However, process becomes time-intensive. Our data cacher
instead distributes the calculation of aggregate statistics in smaller
chunks. To form the chunks it stochastically selects a subset of x un-
computed nodes and n computed nodes where x is derived experimen-
tally based on client-side computational constraints. These x nodes
are then sent to the client to compute and subsequently added to the
database for faster access. This pipeline enabled finding the clusters’
aggregate statistic without a costly preprocess.

5 EVALUATION

To evaluate our system, we discuss design patterns and trends identi-
fied using our tool.

5.1 Findings
For high-level exploration of the design space, we noted some rela-
tionships labels and clusters. For example, we saw that clusters promi-
nent with respect to the “dark” style label were almost exclusive from
the groups for “cute” This exclusivity indicates that ”dark” and ”cute”
pages may lie in separate sets. In addition, inspecting the cluster that
remains opaque for both of these labels may show in the intersection
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Fig. 10. Caption.

of these spaces. In contrast, we see that “cute,” “dull,” and “busy” all
highlight a similar set of webs, suggesting that there are many pages
that have a combination of such labels. However outliers that are il-
luminated strongly for “dull” and “busy” but not the rest shows the
presence of page groupings that are unique with respect to these label-
ings. Figure 10 depicts these findings.

A similar finding can be observed with a combination of URLs
and site type labels. For example the set of clusters prominent when
searching for “nytimes” is almost the same as the set for “news,” sug-
gesting that the Web site for the New York Times is a typical example
of a news site.

These high-level explorations can be used to form hypotheses about
the exclusivity and similarities of Web sites for target URLs and page
labels. It can also help identify outlier groups and illustrate where
individual Web sites lie in the design space. Allowing for users to form
hypothesis at this zoomed-out view of the design space can provide a
starting point for more in-depth exploration.

Fig. 11. Small multiples of color histograms, allowing for comparison
color distributions among different clusters.

At the data profile level, users can use the aggregate data portraits
to get a sense for the characteristics of pages in a cluster. Clusters
might be distinguished by an acute lack of symmetry, an unusual color
distribution, or a high amount of negative space. Users can then ex-
plore how a given cluster compares to others via the expanded small
multiple view.

Using the small multiple view shown in Figure 11, we can inspect
the color distributions across all clusters with respect to hue, satura-
tion, and lightness. In inspecting hue, page colors tend to be heavily

concentrated in the red and blue area of the spectrum, with the yel-
low area relatively neglected. We can also notice that page colors tend
to be relatively unsaturated, with the high saturation bins generally
empty. Designers can leverage this information to either conform or
rebel against current trends in Web design. For example in selecting a
color for Charlotte’s toolbar, we decided to use the underrepresented
color yellow in order to stand out from all the blue- and red-based Web
sites.

6 FUTURE WORK

There are a number of ways that extending our system could allow
for richer exploration. First, an extended feature set could give us
more data to visualize. Second, more visualizations for different de-
sign principles and elements could be implemented. Third, allowing
for better scalability of our visualizations and interaction techniques
would help users explore more deeply. Enabling interactions that al-
low users to track individual designs or select a subset of clusters or
pages to focus on might help people use this system as a design tool.
Another useful evaluation would be to test this system by running a
user study. Given time constraints we did not have the means to con-
duct one in a principled way, but gathering user feedback and observ-
ing how people use the system could provide valuable insights on its
strengths and weaknesses. Finally we could work to apply our system
methodology to other domains with high-dimensional subjects, such
as biology.

7 CONCLUSION

In this paper we presented Charlotte, a system for visualizing high di-
mensional data at scale using the concept of aggregate data portraits
based on important design principles. We described Charlotte’s fea-
tures and interactions as well as provided examples of exploratory
workflows in which users can engage to discover trends in the data.
With the ever-growing repository of data on the Web, leveraging data
in different forms, such as in art or design, has the potential to provide
powerful design tools. Addressing the high-dimensional representa-
tions of designs will be a nontrivial obstacle.

ACKNOWLEDGMENTS

The authors wish to thank the CS448B staff for their helpful input, as
well as the students in the class who gave feedback on this project.

REFERENCES

[1] Data portraits, 2010.
[2] R. Arnheim. Art and visual perception: a psychology of the creative eye.

University of California Press, 1954.
[3] D. Bloomberg. Color quantization. 2008.
[4] S. Bradley. The 7 components of design. December 2012.
[5] M. A. Hearst, D. R. Karger, and J. O. Pedersen. Scatter/gather as a tool for

the navigation of retrieval results. In AAAI Fall Symposium on AI Applica-
tions in Knowledge Navigation and Retrieval, 1995.



[6] H.-P. Kriegel, P. Kroger, and A. Zimek. Clustering high-dimensional data:
A survey on subspace clustering, pattern-based clustering, and correlation
clustering. ACM Transactions on Knowledge Discovery from Data, 2009.

[7] R. Kumar, A. Satyanarayan, C. Torres, M. Lim, S. Ahmad, S. R. Klemmer,
and J. O. Talton. Webzeitgeist: Design mining the web. In CHI ’13:
Proceedings of the SIGCHI conference on Human Factors in computing
systems, 2013.

[8] J. Lovett. The principles of design. 1999.
[9] R. Xiong and J. Donath. Peoplegarden: creating data portraits for users.

In Proceedings of the 12th annual ACM symposium on User interface soft-
ware and technology, 1999.


	Introduction
	Related Work
	Data Set
	Method
	Clustering Web Pages
	Webs as Data Portraits
	Scenting by URL and Labels

	Constructing a Data Profile
	Balance
	Movement
	Contrast and Harmony
	Unity
	Labels

	Interactions
	Implementation
	Data Preparation
	Preprocessor
	Application controller
	Data Cacher


	Evaluation
	Findings

	Future Work
	Conclusion

