
Structural Learning for Web Design

Maxine Lim maxinel@stanford.edu
Arvind Satyanarayan arvindsatya@cs.stanford.edu
Cesar Torres ctorres7@stanford.edu

Stanford University, Stanford, CA 94305 USA

Abstract

Recursive neural networks (RNNs) have been
successful for structured prediction in do-
mains such as language and image processing.
These techniques imposed structure onto sen-
tences or images for more effective learning.
However, in domains such as Web design,
structure is explicitly embedded in the Doc-
ument Object Model, so structured predic-
tion can be done using the natural hierarchy
of Web pages. This characteristic also allows
for features to be inserted at each node of the
RNN rather than only using features at the
leaves. We show that for structural label pre-
diction, this technique outperforms the base-
line by 8%, though it performs poorly for
style labels for reasons that are likely a re-
sult of suboptimal data.

1. Introduction

Design is difficult to quantify, but in domains such as
Web design, it can be represented digitally in the form
of HTML, CSS, and its external resources. As a re-
sult, we can leverage this data and enable machines to
interpret design elements. For example, given a Web
page, can we automatically decide if this page looks
minimal or modern? How can we best encode these
qualitative characteristics in data representations?

In this paper we investigate using structural predic-
tion techniques to learn design descriptors for Web
pages. Based on previous work in Web design and
machine learning, we adapt a method using recursive
neural networks (RNNs) to more accurately represent
Web design by embeding page structure into the fea-
ture representations of Web elements. We use these

structure-embedded feature representations to train
classifiers for two classes of design descriptors. Our re-
sults show that structure is indeed an important factor
to consider when applying machine learning to Web
design, and our technique is able to outperform the
baseline.

2. Background

2.1. Motivation

Automatic prediction of design descriptors can enable
a new class of tools for Web design. Structural seman-
tic labels, e.g., sidebar or comment can enable tools
that automatically manipulate Web content such as
page-to-page or page-to-mobile retargeting. Leverag-
ing style and content-based keywords in design search
can help inspire and direct design work by helping
designers find relevant inspiration. Currently, finding
this inspiration is limited to manually curated galleries
or template libraries. These search techniques do not
provide flexible or scalable navigation of the full Web.

2.2. Previous Work

From previous work we point out three important in-
sights: first, training off-the-shelf binary SVM classi-
fiers for structural semantics using crowdsourced la-
bels with a set of 1,679 visual features is feasible
and achieves a 76% average accuracy (Lim et al.,
2012). Second, when applying machine learning to
Web design, page structure is important (Kumar et al.,
2011). And third, structured prediction using RNNs
has proven successful in domains such as natural lan-
guage and image processing, whose entities do not pos-
sess an explicit structure (Socher et al., 2011). Com-
bining these insights, we adapt an existing structured
prediction technique for a domain where structure is
explicit, structure has been shown to be important
in applying machine learning, and learning has been
shown to be feasible.

Structural Learning for Web Design

3. Method

�P = [0.1 . . . 0.7]�H1 = [0.1 . . . 0.2]

H1 P

DIV
�IMG = [0.2 . . . 0.3]

�H1 = [0.2 0.3 . . . 0.9]

BODY

IMG
�IMG = [0.2 . . . 0.3]

WS

W

W

WSTRUCT

WSTYLE WDOMAIN

WS

WS

�H1 = [0.2 0.3 . . . 0.9]

WS

WS
�BODY = [0.1 0.1 . . . 0.9]

�IMG = [0.8 0.6 . . . 0.1]

�P = [0.7 0.4 . . . 0.3]

�DIV = [0.2 . . . 0.3]

Figure 1. Our adapted RNN model that incorporates raw
feature vectors at every node.

3.1. Our Model

Previous work used RNNs for structured prediction
in domains such as language and image process-
ing (Socher et al., 2011). Using the underlying DOM
tree of web pages, we eliminate the need to develop
the structural extraction techniques used in other do-
mains. Furthermore, this explicit structure allows us
to incorporate an additional set of features correspond-
ing to the parent node at every neuron in the RNN.
An overview of our model is shown in Figure 1.

3.2. Adaptation for Web Design

Our adaptation of RNNs for structured prediction in-
volves modifying the feed-forward step of the algo-
rithm. Typically, the activations for each node of the
RNN is computed by:

p = f(W

c1c2
1

),

where f is the sigmoid function; c1, c2,p ∈ <n×1; and,
W ∈ <n×(2n+1).

In our technique, we apply the semantic transforma-
tion to the parent node:

cparent = f(Wsem

[
fparent

1

]
),

where m is the number of raw features assigned , and
Wsem ∈ <n×(m+1). (The bias term has been com-
bined into all the parameter matrices.) We select f to
be the tanh function rather than the sigmoid function
because our normalized data values range from [-1,1]
rather than [0,1].

We then incorporate the result into computing the ac-
tivation:

p = f(W

c1
c2

cparent
1

),

As in previous work, we then add to each RNN parent
node a softmax layer to predict class labels.

4. Data Preparation

4.1. Feature Set

Each of our examples is a Web element with its cor-
responding feature vector. These elements are derived
from the Bento segmentation of the DOM tree, which
segments visually salient blocks from Web pages (Ku-
mar et al., 2011). The 1,713-dimensional feature vec-
tors for each element include DOM-related properties
(e.g. tree level, number of children), CSS attributes
(e.g. font, color, size), and computer vision features
(e.g. Gist descriptors). These Web elements along
with their feature vectors are provided by the Webzeit-
geist repository (Kumar et al., 2013).

4.2. Tree Binarization

A

B C D

A

B C

DAE E

A

B C

DA

EA

Figure 2. The tree binarization process, which adheres to
Chomsky normal form.

Training RNNs required binarizing the DOM trees for
each Web page. To maintain the parent-child rela-
tionships among the nodes, we constructed post-order
trees from their Bento segmentations and binarized
them using Chomsky normal form as shown in Fig-
ure 2.

This method requires that all product rules follow the

Structural Learning for Web Design

form:

A→ BC

A→ α

S → ε

Thus, if a node has more than two children, a new
product rule would be derived of the form:

A→ BCD ⇒ A→ BE and E → CD

where E is a new intermediary dummy node which
inherits its feature representation from its parent A.

The resulting trees were assigned a post-order identi-
fier and stored within a NoSQL database along with
information describing how to map the original node
back to its parent identifier. This mapping is needed
to reconstruct the tree for training and evaluation.

4.3. Label Collection

We collected two classes of labels with which to train
RNNs: style and structural semantic. Style labels de-
scribe the design of the Web page, e.g., minimal or
elegant, and structural semantic labels describe the
purpose of each element on the page, e.g., sidebar or
comment. While style labels are page-level descrip-
tors, structural semantic labels describe an individual
page node. We ran one study for gathering the page-
level labels and another for gathering node-level labels.
Overall we recruited over 1,300 US-based participants
from Amazons Mechanical Turk and ODesk to apply
over 35,000 domain, style, and structural semantic la-
bels to over 4,000 Web pages. These pages were drawn
from the Webzeitgeist design repository, which pro-
vides visual segmentations and page features for more
than 100,000 Web pages (Kumar et al., 2013).

Style Labels Structural Semantic Labels

Fr
eq
ue
nc
y

Figure 3. Heavy-tailed distributions of collected label sets.

4.4. Cleaning Data

Allowing users to enter labels in a free-form text field
encouraged a wide variety of labels, but it also resulted
in a heavily tailed frequency distribution, as shown in
3. Among the thousands of distinct labels, many only

Table 1. Number of total and distinct raw labels for all
three label classes.

Label Type Total Raw Distinct Raw

Site Type 18,881 2,011
Style 24,021 1,718
Structural 21,995 2,657

Table 2. Number of total and distinct used labels for all
three label classes.

Label Type Total Used Distinct Used

Site Type 17,883 65
Style 22,564 70
Structural 15,897 80

occurred one time or had effectively the same meaning
as another label. These labels differed only by choice
of delimiter, e.g., eye− catching and eye catching, or
word form, e.g., religious and religion. We applied a
series of transformations to clean the raw data.

To clean the site type and style labels, we first trimmed
each entry of extra punctuation at the ends, i.e.,
simple became simple. We proceeded to split long
compound labels by the underscore character only if
each of the resulting terms had already occurred in
our label set. For examine simple clean minimal
would be split into simple, clean, and minimal
since each had occurred in the set individually, but
black and white would not, because and did not ap-
pear in our original label set. Next we merged labels
with common stems derived from the Porter2 stem-
ming algorithm, then manually merged labels such as
cartoonish and cartoon. Finally, we removed labels
that had only been applied once or only by one per-
son. For the structural semantic labels, we only re-
moved labels that had only been applied once or by a
single individual.

4.5. Label Results

The number of total and distinct labels from our study
for the two label classes is shown in Table 1. Even after
cleaning the data, there were still hundreds of distinct
labels for each class, many of which would be difficult
to for a person, much less a learning algorithm, to dis-
tinguish between. Furthermore, many labels only oc-
curred a handful of times, producing too few examples
to expect our RNN to learn. Therefore we selected the
most frequent set of labels to learn, maintaining only

Structural Learning for Web Design

the labels that occurred fifty or more times. This final
filter reduced each set of labels to less than a hundred
distinct elements, as shown in Table 2.

5. Learning

5.1. Unit Tests

Given the changes we introduced to the RNN frame-
work, we constructed a set of simple unit tests to
verify that gradient descent would converge correctly.
These test cases involved simple tree structures of 3-10
nodes, 2 raw features and 1-3 label classes which were
fed through the RNN with “gradient check” enabled.
With this flag, the gradient descent library would cal-
culate an expected gradient and compare it to the out-
put of the RNN. Once our unit tests passed the gra-
dient check, we had some level of confidence on the
validity of our code.

5.2. Experimental Setup

To train and evaluate the RNN, we constructed a hold-
out set with 80% of the data used for training and 20%
for testing. For a baseline comparison, we developed
a “softmax only” classifier which was trained only on
labeled nodes (i.e., ignored the structural hierarchy of
a web page tree). After several rounds of training and
testing, we determined two suitable metrics for judg-
ing the accuracy of label classifiers: cross entropy and
whether ground truth labels were in the top N pre-
dicted labels, where N is the number of ground truth
labels. The latter is a more human understandable
measure of accuracy that remains robust against mul-
tiple co-occurring labels without penalizing predicted
ordering.

5.3. Parameter Tweaking

Adjusting the parameters of the RNN significantly af-
fected its performance. In particular, we tweaked two
parameters: n, the number of hidden nodes in the
RNN, beginning at 50 and in increments of 50; and
λ, the regularization constant, by orders of magnitude
starting at 0.0001. We found the optimal parameters,
determined by the highest average test accuracy of la-
bels, to be n = 100, λ = 0.01. On average, the RNN
would take 15-20 hours to train. Thus due to time
constraints, we were only able to adjust parameters
for a limited set of permutations.

6. Results and Discussion

At the optimal parameters of n = 100, λ = 0.01, the
average test accuracy of structural RNN-classifiers is

58% with search being the most accurately classified
label at 96% and user control at 0%. In compari-
son, the baseline average test accuracy is 50%. On the
other hand, style labels perform significantly worse.
The average test accuracy is 6% for RNNs compared
to a baseline average of 8%. Many of the style la-
bels were not accurately predicted whatsoever (0%)
by either. However, clean and modern performed well
under both conditions: 81% and 57% respectively for
RNN; 96% and 81% for the baseline. These accuracies
are listed in Figure 5.

structural semantic
style

148
252

86
4

90
3

Type # Labels Softmax (%) RNN(%)

TRAINING Accuracies
n=100, lambda=0.01

structural semantic
style

38
64

50
8

58
6

Type # Labels Softmax (%) RNN(%)

TESTING Accuracies
n=100, lambda=0

Figure 5. Average training and test accuracies for struc-
tural semantic and style labels. For structural labels, RNN
outperforms the baseline.

Although the RNN-classified labels do perform, on av-
erage, better than the baseline, we expected the addi-
tion of structural information to make a larger impact.
Moreover, while previous work obtained an average ac-
curacy of 76% for structural labels using binary SVMs,
our results are much lower. Granted, given that the
data, the label set, and the metric are different, these
numbers are perhaps unfairly compared.

However, one reason for this result can a sparse data
set. We had many distinct labels, and the frequency
was not evenly distributed among them. Labels that
performed well tended to have more examples. Col-
lapsing this set of labels even further, or collecting
more data would help to reduce the skew in the data
set.

Another problem with our data was the miscalculation
of negative examples. Due to the manner in which we
conducted our crowdsourced label collection, we did
not have any true negative examples: if a node or
page does not have a specific label, it does not imply
that it is not in that class. Counting a lack of a label
as a negative label is likely having a detrimental effect
on the learning.

Structural Learning for Web Design

Figure 4. Heat map of raw features grouped by label for structural and style labels. Note the density difference between
style and structural semantic feature vectors.

Our data set does not entirely account for why style la-
bel classifiers performed so poorly, especially compared
to their structural counterparts. We hypothesize that
our choice of softmax classifier is also negatively affect-
ing style label accuracy. Typically, a node can only be
labeled with any one of the structural labels. Thus,
softmax is a good classifier to use here as all proba-
bilities must sum to 1. But in the case of style labels,
a page can be described with multiple labels, making
softmax cause a “smearing” of predicted probabilities.
Training multiple binary classifiers might be a better
choice for non-disjoint labels.

Although we do not have optimal results, we have ev-
idence that these descriptors can be learned and that
structure is important in this learning. As shown in
Figure 4, the heatmap visualizations of raw features
grouped by label show clear banding, which implies
that there are patterns to be learned for both struc-
tural and style labels. Additionally, RNNs do better
than the baseline for structural labels by 8%, indicat-
ing that structure can further inform the learning.

7. Conclusion

We have implemented an adapted RNN algorithm for
embedding structure into the feature representations
for Web elements to predict design descriptors for Web
design. We’ve shown that for the optimal parameter
combination, our method is able to outperform the
baseline by 8% for structural labels. Unfortunately
overall our accuracies are low, and for style labels our
classifiers consistently performed poorly. We point to
parameter adjustment, a richer, better data set, and
different classifers types for the different label classes
as ways to improve our accuracies.

7.1. Future Work

Looking ahead we are re-running our experiments with
a collapsed label set of approximately twenty labels
per label class. By merging similar labels together
(e.g. header and heading) and removing ones that
were difficult for even humans to understand (e.g.
user control), we believe that a more accurate set of

softmax classifiers will be learnt on a smaller label set.

We have also launched a new round of crowdsourced la-
bel collection to increase the density of our label set. In
this study, participants are given the newly collapsed
set of labels and are taken through our corpus page-by-
page. For each page, participants are asked to select all
style labels that apply. They are then taken through
each structural label individually and asked to select
all visual blocks that fit the label. With this design, we
can be more confident that our dataset is complete: in
particular, as participants see the whole set of labels,
if a node or page does not have a particular label, this
does indeed count as a negative example.

With style labels, we are investigating the effects of
training multiple, independent logistic classifiers: one
per label. The obvious caveat is that different style
labels may not necessarily be independent: a page be-
ing labeled clean may also imply that it is minimal.
Nonetheless, we believe this may be a first step to-
wards addressing the issue of probability “smearing”
discussed previously.

Acknowledgments

This work was done in collaboration with Ranjitha
Kumar, Richard Socher, Jerry O. Talton, and Scott
R. Klemmer.

References

Kumar, R., Talton, J. O., Ahmad, S., and Klemmer, S. R.
Bricolage: Example-based retargeting for web design. In
CHI: ACM Conference on Human Factors in Computing
Systems, 2011.

Kumar, R., Satyanarayan, A., Torres, C., Lim, M., Ahmad,
S., Klemmer, S. R., and Talton, J. O. Webzeitgeist:
Design mining the web. In CHI: ACM Conference on
Human Factors in Computing Systems, 2013.

Lim, M., Kumar, R., Satyanarayan, A., Torres, C., Talton,
J. O., and Klemmer, S. R. Learning structural semantics
for the web. Technical report, Stanford University, 2012.

Socher, R., Lin, C. Chiung-Yu, Ng, A. Y., and Manning,
C. D. Parsing natural scenes and natural language with
recursive neural networks. In Proceedings of the 28th
International Conference on Machine Learning, 2011.

