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Figure 1. System Architecture - A web crawler begins by traversing the web from a seeded 
list. Typically, this crawler would only extract content-based information, limiting a complete 
design representation. Our approach extracts raw resources for a static representation and 
stores structure, runtime style, and visual information in a data store. A restfulAPI facilitates 
communicates between the data store and client applications. 

Figure 2. Schema -  Raw resources were stored in a NoSQL database for quick random 
access, while DOM information and its representative visual block information were stored in a 
MySQL relational database. Note in particular the abstract feature table that provides a 
framework for extending the feature characterizations of visual blocks. 

Motivation:
Content, links, and metadata are common features used 
in web indexing software. Although this representation 
provides adequate information for content-based search, 
major web design components are left out of the 
equation. 

In order to leverage the web as a design corpus, a more 
complete design representation is needed. We introduce 
an architecture for scalable design mining and present 
some initial results for a data-driven exploration of design 
patterns.

 Results

Figure 3. Search Application - The top figure displays results from a 
crowdsourcing study on semantic labels. The bottom figure displays the results 
of a 1000 node query on GIST features sorted by euclidean distance.

Methods:
Our system currently consists of a production set of 
100K indexed web pages and a subset of 10K web 
pages. For each of these pages, we have stored the 
DOM structure, runtime attributes (CSS), and the bento 
segmentation block algorithm representation of the 
DOM.  A static instance of each page is stored in order 
to ensure consistent results. Features are extracted for 
each visual block that encode design attributes (e.g. 
color, layout, typography,  etc..) from a variety of 
sources:

Semantic Features [36 features] 
A crowdsourcing experiment asked participants to label 
the five most important elements on a page. We stored 
frequency data as well as substring matches to class 
and id attributes.

Visual Features
GIST Descriptor [960 features]
A global image feature (GIST) descriptor encodes the 
strength of horizontal and vertical lines in an image.

Structural Components [29 features]
Structure is represented through relationships of the 
visual block to its surrounding DOM environment. (e.g. 
treeLevel, numChildren, numSiblings, etc...)

Future Work :
Omniscent
Through the Webzeitgeist infrastructure, we intend to train a distance metric for 
combinatorial search queries and present an interface for design exploration.  

Probabilistic Web Inference Models
This work investigates learning design grammars using bayesian inference. We will 
construct a probability model that will infer web design patterns from a set of 
exemplars. An interface will allow for retargeting of visual blocks using the 
Webzeitgeist restfulAPI and semantic classifiers. 

Rendertime Style and Attributes (CSS) [318 features]
Each visual block's rendertime styling was computed 
using a headless browser. This reduced the dimensional 
space (px, em, pt, %)  to a common basis (px). Fixed-set 
value attributes are binarized whereas allowable variable-
length attributes are determined using a thresholded 
frequency plot. All values were mapped to [0, 1]. 
Unbounded quantities’ theoretical bounds were 
calculated using frequency counts in the  [2, 98] 
percentile.
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Feature Extraction:
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