
Webzeitgeist : Design Mining the Web Cesar Torres1,2, Ranjitha Kumar1, Scott Klemmer1

1Department of Computer Science, 2Department of Art and Art History
ctorres7@stanford.edu, {oranju, srk}@cs.stanford.edu

STANFORD HCI GROUPbento.stanford.edu

 Architecture

Proxy Server

...

Web Crawler

SQL Database
DOM structure, DOM

attributes,
page segmentation, computed

features

NoSQL Database
raw html, page resources,

screenshots, feature vectors
A
P
I

Seed
URLs

The Web

Client
Applications

Post-Processes
segments pages,
computes features

Browser
Thread

Browser
Thread

...

data store

Proxy Content

ID

Proxy Links

ID

Page ID

Resource ID

PK

PK

FK

FK

DOM Nodes

DOM ID

Parent ID

Page ID

PK

PK

AttributesStyles

Visual Blocks

Block ID

Page ID

DOM ID

PK

FK

Parent ID

x y

width height

FK

Visual & Semantic
Features

Block ID

Page ID

PK

PK

Feature Attributes

URI User Agent

Metadata Status

Node Type Tag Name

Node Value Inner HTML

Foreign key

Relational link

NoSQL

Figure 1. System Architecture - A web crawler begins by traversing the web from a seeded
list. Typically, this crawler would only extract content-based information, limiting a complete
design representation. Our approach extracts raw resources for a static representation and
stores structure, runtime style, and visual information in a data store. A restfulAPI facilitates
communicates between the data store and client applications.

Figure 2. Schema - Raw resources were stored in a NoSQL database for quick random
access, while DOM information and its representative visual block information were stored in a
MySQL relational database. Note in particular the abstract feature table that provides a
framework for extending the feature characterizations of visual blocks.

Motivation:
Content, links, and metadata are common features used
in web indexing software. Although this representation
provides adequate information for content-based search,
major web design components are left out of the
equation.

In order to leverage the web as a design corpus, a more
complete design representation is needed. We introduce
an architecture for scalable design mining and present
some initial results for a data-driven exploration of design
patterns.

 Results

Figure 3. Search Application - The top figure displays results from a
crowdsourcing study on semantic labels. The bottom figure displays the results
of a 1000 node query on GIST features sorted by euclidean distance.

Methods:
Our system currently consists of a production set of
100K indexed web pages and a subset of 10K web
pages. For each of these pages, we have stored the
DOM structure, runtime attributes (CSS), and the bento
segmentation block algorithm representation of the
DOM. A static instance of each page is stored in order
to ensure consistent results. Features are extracted for
each visual block that encode design attributes (e.g.
color, layout, typography, etc..) from a variety of
sources:

Semantic Features [36 features]
A crowdsourcing experiment asked participants to label
the five most important elements on a page. We stored
frequency data as well as substring matches to class
and id attributes.

Visual Features
GIST Descriptor [960 features]
A global image feature (GIST) descriptor encodes the
strength of horizontal and vertical lines in an image.

Structural Components [29 features]
Structure is represented through relationships of the
visual block to its surrounding DOM environment. (e.g.
treeLevel, numChildren, numSiblings, etc...)

Future Work :
Omniscent
Through the Webzeitgeist infrastructure, we intend to train a distance metric for
combinatorial search queries and present an interface for design exploration.

Probabilistic Web Inference Models
This work investigates learning design grammars using bayesian inference. We will
construct a probability model that will infer web design patterns from a set of
exemplars. An interface will allow for retargeting of visual blocks using the
Webzeitgeist restfulAPI and semantic classifiers.

Rendertime Style and Attributes (CSS) [318 features]
Each visual block's rendertime styling was computed
using a headless browser. This reduced the dimensional
space (px, em, pt, %) to a common basis (px). Fixed-set
value attributes are binarized whereas allowable variable-
length attributes are determined using a thresholded
frequency plot. All values were mapped to [0, 1].
Unbounded quantities’ theoretical bounds were
calculated using frequency counts in the [2, 98]
percentile.

Feature W3 Specification: QtBrowser Vector Representation
float right|left|none|inherit right|left|none isFloatRight, isFloatLeft,

isFloatNone
font-family family-name, generic|inherit Helvetica, sans-serif top 30 typeface (isHelvetica, etc..)

width px|pt|em|%|auto|inherit min: 0 , max: inf

theoretical mapping [0,1]
98th percentile : 1280px

Visual block selection for
new search query

cols

numChildren

height

font-size

border-top-width

numImages

padding-right

numSiblings

treeLevel

<textarea cols=‘number’>
I am a text area.
</textarea>

Feature Extraction:

mailto:ctorres7@stanford.edu
mailto:ctorres7@stanford.edu

